7 Questions Reveal Do Your People Really “Know Welding”?

October 25, 2015

Having some people who “know welding” is usually considered adequate or good welding staffing in American industry.  In essence, if welding is occurring and products are shipping, managers and executives who know nothing about welding sciences will assume that they are adequately staffed for competition and growth.  But is that REALLY true in your company, or is it only a common and expensive assumption?  Here are seven important questions to gage whether your company’s welding science expertise is adequate:

  1. How much money is being lost in weld scrap?
  2. How many hours are being spent in weld repairs?
  3. How many hours are being spent making “welding adjustments” to automated equipment?
  4. What is your internal PPM (or DPMO) weld repair defect rate on products, and how much have you lowered that repair rate in the last year?
  5. What is your external weld defect rate shipped to your customers, and how much have you lowered that over the last three years?
  6. How many times a year does staff have to repair, reprogram or “touch up points” in welding automation that “crashed”?
  7. What are your primary welding operation bottlenecks, and how much have you reduced their cycle time in the last three years?

Of course this isn’t an exhaustive list.  But if your welding staff expertise is excellent and adequately supported for your profitability, they can provide answers to all these questions in a day or less.  Questions 4, 5, and 7 all point to your facility’s continuous improvement environment in welding operations:  if you don’t measure, that’s a forfeit.  If you measure but you have no continuous improvement, it’s because your inadequate welding staffing is locked in firefighting mode and/or hopelessly lacking in welding science expertise.

It’s astonishing that with the complex chemical interactions and high-speed transitions between solid/liquid/gas states, involving the arc plasma, metallurgy, over a dozen process variables with multiple interactions, tooling design, fit-up variations, and dimensional distortion… that welding in America is still thought to be a “simple” process that doesn’t need a trained welder, a welding-process-trained programmer, a specifically trained welding engineer, or targeted scientific research.  If you imagine that you are a metal stamping company without a mechanical engineer or tool-and-die maker, perhaps you can correlate how wide-open the risk and potential is in most companies doing welding.

About 7 years ago as a Manufacturing Welding Engineering Manager, I assigned a task to the 7 or 8 bachelor’s welding engineering grads in my team from all three schools (Ferris, OSU, LeTourneau), to total up the hours they spent in college in welding classes, doing welding structure/metallurgy/process homework, or under the hood performing guided/graded welds. The average minimum was 4,000 hours… much higher for the Ferris guys due to all the “under the hood” time.  Our team applied that welding engineering expertise to great advantage.  What would your bottom line look like if you eliminated 90% of your weld repairs, shortened your welding cycle-times by 20%, reduced your shipped weld defects by more than 50%, and launched new lines that were running at full rate and low defects in the first 30 days?  That’s your funding motivation to staff and empower welding science expertise.

Still think your people “know welding”?


Most Disruptive New Paradigm Technologies

February 27, 2010

What are the most powerful, the most disruptive new paradigm-shifting technologies for manufacturing?

TIP-TIG 2009 North American welding package introduction

That’s a harder question to answer than what people realize, and many people would answer it differently. I’m going to answer it myself in this article, slanted toward welding. But the biggest power of the question lies in the searching and the analysis, because ultimately that’s not the question that needs answered. The question that any leading company executive or engineering manager really needs to answer is this one:

“Which new paradigm-shifting technologies can I take full “disruptive” advantage of in my marketplace segment or new segments?”

Answering that question effectively requires research and analysis, as well as a keen visionary eye.  Because in evaluating a new technology for feasibility and disruptive profit potential, you must accurately envision what can realistically be, not what already is. Essentially, you must think innovatively.

Take for example, this recent article in Fabricating & Metalworking on Hybrid Laser Arc Welding (HLAW) as “the future of welding”, which leads off with this statement:
“This innovative technology is the most disruptive in a generation, leading some to believe hybrid laser arc welding will be a core welding process in the next five to ten years.” Read the rest of this entry »