On Shoulders of Giants – Part 2

June 25, 2018

On Shoulders of Giants – Part 2

Continued from Part 1 here.

Only fifteen years after my LeTourneau graduation did I realize that the availability of welding science expertise in industry is in fact, sadly rare. Even ridiculous. It hit me when Yoni Adoni (OSU/LeT-U) explained that the raw numbers for W.E. graduates and Welding Engineer job titles reveals that 70% of “Welding Engineers” don’t have the degree. As the overwhelming rule of thumb, they are “familiar” with one or two welding processes but have little or no welding science training.

This holds the weighty implications that degreed W.E. compensation centers around the 85th percentile, and that true, un-hyped “blue ocean” advantages exist for companies who infuse their company’s core with welding science competency and nurture it.

These realizations evoked yet another puzzling frustration: how could it be that 95% of company engineers, managers and executives, and 99% of HR managers or directors seem unable to comprehend and leverage such obviously valuable opportunity, fully exploiting welding science for competitive advantages? Surely I’m not the only one with two eyes in my head!

Like Morpheus’ splinter illustration to Neo (The Matrix), there was a splinter in my mind: amidst all of this there were two things that especially stumped me over the years. First, the wide gap between EWI’s applied welding process expertise, and my expertise. Second was a maddening, incomprehensible industry-wide ignorance that is blind to the existence of both welding sciences and welding engineers.

  1. How could I have TWICE unknowingly come into a facility behind an Edison Welding Institute (EWI) TEAM investigation report, and bested EWI engineers by predicting and delivering welding process improvements of 500%+ beyond what their evaluation said was possible? There is nothing shabby about EWI’s remarkable achievements – they are arguably the most renowned and most capable pool of consulting welding expertise on the globe.
    So how does this make any sense?  How is it that:
  • A new (1993?) Carrier compressor plant told me that their single biggest problem – a joint made by one simultaneous 10-point Resistance Projection Weld – couldn’t be fixed until they re-designed and re-tooled a completely different approach, which would total nearly a half-million dollars. I objected that it posed no problem to weld, and was probably a superior design – despite the new-launch failure rate which often exceeded 50%. But those decisions made several days earlier were grounded in the fact that both the RW machine builder and an EWI team had concluded that it could not work and that the only solution was to revert to an industry-standard design. I looked it over for 15 minutes, went back and told him all he had to do was reduce the force, increase the amps and volts, and shorten the weld time, and it should be no problem. A week later they let me and a T.J. Snow staffer take 45 minutes (wink) to develop a new weld schedule and machine settings. 30 minutes later, they couldn’t separate more than two projections in over 50 hits from a 32-oz ballpeen hammer (literally) that completely flattened all the sheet metal. Yet, until that moment, whacking it twice without snapping it completely off was labeled as “good” because that was the best ever accomplished.
    What?!!?
    How do I make sense of erasing this simple half-million dollar “impossibility” in 30 minutes, with no tooling or machine hardware changes, based on a 15 minute evaluation?  Were EWI’s main RW experts and the RPW machine-builder’s lead staff ALL on longggg vacations? Can’t any good welding engineer do this stuff?
  • A two-week EWI team investigation in the mid-90’s provided a filled three-inch ring-binder report which concluded that Copeland Corp’s (Emerson Electric) flagship scroll-compressor plant headquarters production facility was doing fantastic in their RPW/GMAW/Brazing/Friction-welding production as the industry leaders and that they might be able to accomplish 5 to 10% reductions in welding rework & scrap. Months later after a pre-interview one-hour plant tour, I was shown charts on their weld defect/scrap tracking, and pointedly asked how much improvement I thought was possible. Encouraged to sit and ponder it at length, I took four minutes to consider everything I’d seen on the floor, and told Gerry Ulrich that with teamwork we could cut those rates by 50% the first year and cut it in half again the second year for a 75% reduction.
    When Gerry asked my certainty, I said I was confident in the first 50%, and felt the 2nd year was a bit conservative because I suspected we could do better. (I knew nothing about EWI’s study and report until months later.)  A year later we were at 50%, and ending the 2nd year we had reduced FPY losses by 80% since my interview. (Although Copeland never understood what really happened or how to fully leverage it, varying portions of what I accomplished was franchised into many new plants across the US and the globe.)But any good welding engineer can do this, right?  Ten years into my career, my confidence in that assumption was eroding, and it disturbed me. I was perplexed by EWI’s inability to provide more benefit to their customer than they did with four(?) W.E.’s in two weeks, but I slid it unexplained onto the back burner, where this puzzle intruded into my mind a thousand times.
  1. How is it possible that the 95%+ majority of manufacturers who daily sell their expertise at making complex welded assemblies think that they do something else, just because it superficially looks like an aerospace battery enclosure, an EGR cooler, an automotive seat frame, a truck axle, a nuclear valve, or a compressor?
    Worse, companies think that staff or vendors without extensive welding science training can design and program a welding automation system that is infused with process expertise to deliver high-profit, high quality results with huge competitive advantages. That will NEVER, EVER happen – yet that myth appears to be the prevailing “conventional wisdom”

The final piece of my mental puzzle was in coming to grips with myself. “I want to make a difference” is an inadequately shallow description. In every job I’ve ever had, my goal has been to understand the company and chart a path to guide their unique cultural blend of talent through thousands of un-comprehended complex details, to reach achievements and performance levels that had never been thought possible. This, too, I imagined was something that “every good welding engineer” did.  But they don’t.

All of this spiraled into many interwoven questions that tumbled in my mind for years like threads in a dryer, seeming to defy every attempt to untangle and weave them into a cohesive, accurate explanation:

  • WHAT IS SO WRONG WITH EXECUTIVE MANAGEMENT TRAINING PROGRAMS THAT EVEN VERY SHARP EXECUTIVES DON’T SEE A GRADUATE WELDING ENGINEER AS A VITAL TECHNICAL ENGINEERING MANAGER ON THEIR DIRECT-REPORT TEAM?
  • Why do very smart people see no problem when technically ignorant people get to override a degreed welding engineer with financially costly errors that demand long hours from their W.E. to even partially compensate for them?
  • Endlessly following mythical welding “facts”, tribal “knowledge” and committee-decision technical nonsense… how is that a good strategic policy for explosive growth and low turnover of their most crucial technical expertise?
  • How is it not inherently obvious that as the most complex industrial processes by far, blending more sciences and interactive process control variables than any other, welding science must become a Core Competency if they are to ever remotely approach their facility and corporate potential?
  • How can a leading automotive Tier I supplier of welded metal assemblies believe that a major quality spill is due merely to an accidentally deleted pause after arc-start, before the robot starts moving? How can they not see the true root cause is in not having one single welding engineer among more than 10,000 employees in over 50 global facilities, and that such blindness makes costly welding quality problems a certainty?

It is questions like these that kept me puzzling, got me researching, and kept haunting me. Finally I’m at a point in my career where the many complexities have coalesced, and I’ve been able to analyze and rationalize these systemic industry roadblocks.

In a simple nutshell, here is the core root-cause of these blindnesses:
Industry and management are ignorant of the existence and power of welding sciences and welding engineering, simply because they’ve never been taught.

Some have been told, but very rarely have they been taught.  A three-page e-mail to an engineering & management team is a sure-fail method to teach them a foreign language and culture that they have never been exposed to.  I know.  I’ve spent hundreds of hours trying to find ways to TELL, and it has only exhausted me while frustrating everyone.  Simple facts can be told, but complex matters can only be taught.

Why don’t at least SOME companies recognize this “blue ocean” opportunity and infuse welding science as a core competency with a determined growth strategy, and include serious succession planning for senior welding engineering staff?

Don’t companies want to make money, gain marketshare, and catapult their future forward?

Yes.  But in the stark manufacturing world beyond CATERPILLAR and John Deere, such commonplace business goals are rarely applied to the practical welding sciences that are strewn across the entire plant. In this one arena of welding, this one arena only, the myths, excuses, guesses, tribal knowledge, medicine-men and folklore still substitute for common-sense business. Despite massive profit losses in welding, over 98% of executives, managers and engineers show no interest in welding performance data tracking that could de-cloak both those losses and their potentials.
Can’t they see the vastly untapped potential of welding science expertise? No. Definitely not.

After decades, I’ve realized there are definitive reasons for the common welding blindness’s of both engineers and managers, as well as executives. They are embedded firmly in the chronological industrial timeline, which is hinted at by the late appearance of welding physics, equipment and process development.  But the magnitude of this problem is revealed in a simple organizational survey question: how many of your staff have had at least one welding science, welding process, or welding equipment class? Contrast that with the classroom and lab training that welding engineering programs provide, and your first glimpse of the size of this chasm will come into view.

Despite being the most complex industrial processes, applied welding science studies were never mainstreamed into collegiate engineering, management, and manufacturing processes curriculum. In fact, only three universities ever created substantial ABET-accredited degrees in welding engineering. Understanding this history finally makes it possible, for the first time, to build effective strategies to unleash advancements and competitive advantages in this barely-explored territory.

I’m skilled at developing custom training programs – finding development bandwidth is the challenge.  Yet if I can find some means to get this knowledge into manufacturing management, engineering managers and corporate executives, and chart paths around the obstacles, my knowledge could enable immense sea-change benefits.  If I can pave that road, then a few other welding engineers and their companies will be able to follow.

On that coins’ flip-side, if I do not find my voice, and ways to speak up and speak effectively, it’s unlikely that my abilities will ever be used to the extents they could be leveraged to transform profits and launch companies manufacturing welded assemblies into global orbits of excellence that leave historical legacies of market dominance.

Joe Beckhams’ parting advice and comments indirectly convinced me that I need to write the book I’ve pondered for the last decade:

Toward World Class Welding.

I probably should write it. But I naturally wonder, would there be significant interest? Would it make a difference?

Perhaps it would. Maybe the simple fact that words printed in a book that are being read by a company I don’t work for, could induce the assumption that I have noteworthy expertise in manufacturing welding process science.

If you’ve read this far, thank you for enduring my rambling points of repetition and questionable literary skills.  As a reward, I offer this career-long observation that I hope you’ll take to heart:

Any manufacturer with “good” welding processes who lacks a welding-degreed engineer among more than a hundred employees is very likely losing more than 10-times in profits what a full-time Smart Welding Engineer would cost – one who could deliver those lost profits to the bottom line.

My talents shouldn’t go to waste when they could make a large impact for countless facilities.  So if you’d like my assistance in any strategic or technical welding area, I do have weekends and some vacation time available.  E-mail me and we’ll explore from there.

 

The Hall of Giants

My most notable mentors were/are these men:

  • Bill Dorsey, an Electrical Engineer steeped in applied welding engineering who led development of one of the most successful and respected power supplies in the welding equipment industry, known in combination with the MIG-35 feeder for its exceptionally smooth arc, its dependable arc-starting, and its durable reliability. Bill was my main mentor. His brilliant mind was evident, and my frequent exposure to his systematic logical troubleshooting of welding processes and equipment, with running educational commentary, had value beyond description. In many ways, though I suspect it was unintended, I became his unpublished protégé.   My absorbed abilities in welding system design evaluation and improvement have never been tapped to any extent beyond benchmarking and predicting production performance results.
  • Ted Toth, a quiet in-the-shadows immigrant genius whose main legacy was the architecture and control algorithms for the legendary Digipulse 450 that especially ruled Electric Boat for over a decade and the Korean shipyards for two decades. Ted was genuinely excited to work with me ten years after I left L-TEC/ESAB N.A., to take the waveform I developed for automotive exhaust with 409/439MC and give me a fully synergic version across the whole WFS range.   Then months later I called him with a proposal for how I would love to see tip-burnback-prevention built into the main arc control loop logic. With only a few minutes of my explanation of the control-logic approach, Ted was excited to plunge into it. Perhaps three weeks later he called to announce he was e-mailing me a new .bin to burn into the Digipulse E-ProM’s on our robotic welding systems. It was an instant success that ESAB immediately leveraged for their Al welding customers, where the impact was 10x greater.
  • Joe Devito, a quiet, confident hands-on welder/instructor/trainer/lab developer and more. He had more influence on me than he suspected.
  • To Rex Young, thank you for being the man I grew to appreciate so deeply: a kind, fun, thoughtful gold-mine of expertise, knowledge and advice in all matters of Resistance Welding.
  • To Tim Iorio, thank you for the opportunity to have some of your strategic vision and heart rub off onto me, along with other invaluable things. You are often remembered.
  • To Joe Beckham, the value of your parting words cannot be measured in a mortal lifetime. Thank you. I’ll probably have more to say. But for now, refer to the narrative above.
  • To Daniel Mann, you’re a marvel and a brother. You walk a narrow, unmarked, untraveled path that’s well beyond sight of the 10 or 15 year learning curve in your position. You are an awe-inspiring pioneer. I wish we had more time beyond the next firefight, to learn from one another, collaborate and fully deliver the results we’re capable of.  It would be epic.

 

Advertisements

7 Questions Reveal Do Your People Really “Know Welding”?

October 25, 2015

Having some people who “know welding” is usually considered adequate or good welding staffing in American industry.  In essence, if welding is occurring and products are shipping, managers and executives who know nothing about welding sciences will assume that they are adequately staffed for competition and growth.  But is that REALLY true in your company, or is it only a common and expensive assumption?  Here are seven important questions to gage whether your company’s welding science expertise is adequate:

  1. How much money is being lost in weld scrap?
  2. How many hours are being spent in weld repairs?
  3. How many hours are being spent making “welding adjustments” to automated equipment?
  4. What is your internal PPM (or DPMO) weld repair defect rate on products, and how much have you lowered that repair rate in the last year?
  5. What is your external weld defect rate shipped to your customers, and how much have you lowered that over the last three years?
  6. How many times a year does staff have to repair, reprogram or “touch up points” in welding automation that “crashed”?
  7. What are your primary welding operation bottlenecks, and how much have you reduced their cycle time in the last three years?

Of course this isn’t an exhaustive list.  But if your welding staff expertise is excellent and adequately supported for your profitability, they can provide answers to all these questions in a day or less.  Questions 4, 5, and 7 all point to your facility’s continuous improvement environment in welding operations:  if you don’t measure, that’s a forfeit.  If you measure but you have no continuous improvement, it’s because your inadequate welding staffing is locked in firefighting mode and/or hopelessly lacking in welding science expertise.

It’s astonishing that with the complex chemical interactions and high-speed transitions between solid/liquid/gas states, involving the arc plasma, metallurgy, over a dozen process variables with multiple interactions, tooling design, fit-up variations, and dimensional distortion… that welding in America is still thought to be a “simple” process that doesn’t need a trained welder, a welding-process-trained programmer, a specifically trained welding engineer, or targeted scientific research.  If you imagine that you are a metal stamping company without a mechanical engineer or tool-and-die maker, perhaps you can correlate how wide-open the risk and potential is in most companies doing welding.

About 7 years ago as a Manufacturing Welding Engineering Manager, I assigned a task to the 7 or 8 bachelor’s welding engineering grads in my team from all three schools (Ferris, OSU, LeTourneau), to total up the hours they spent in college in welding classes, doing welding structure/metallurgy/process homework, or under the hood performing guided/graded welds. The average minimum was 4,000 hours… much higher for the Ferris guys due to all the “under the hood” time.  Our team applied that welding engineering expertise to great advantage.  What would your bottom line look like if you eliminated 90% of your weld repairs, shortened your welding cycle-times by 20%, reduced your shipped weld defects by more than 50%, and launched new lines that were running at full rate and low defects in the first 30 days?  That’s your funding motivation to staff and empower welding science expertise.

Still think your people “know welding”?


The Welding Eye in Team

April 25, 2010

How Sharp are Your Team's Eyes?

How do you get welding excellence in new-product-launch in manufacturing?  Skilled contributors working with great teamwork. But what does that mean, and how does it work? Everyone has heard “there is no “I” in TEAM”. Still, every team member is an Individual. The “I” that counts most is the “eye” that team members have for real teamwork. They need a good “eye” for how they view themselves, their team, and their roles.

The critical part of the “eye” in team leadership is what John Maxwell calls the single most important factor in high-performance teams: The Law of the Niche, third of the 17 Indisputable Laws of Teamwork. The Law of the Niche says that every player on a team has a place where they add the most value. Their niche position takes advantage of a blend of their greatest skills.

I love producing exceptionally profitable high-quality results in manufacturing, and am keenly aware that it takes a great team. Exceptional welding automation is NEVER produced by a jack-of-all-trades engineer, nor by a micro-manager who dictates everything, nor by a talented robotic programmer whose ego ignores the input of a degreed welding engineer. Exceptional welding automation is produced by individuals with respect for each other’s niche skills in tooling, controls, and welding expertise, who are focused on exceptional results.

Legends of Welding Excellence and Teamwork

This welding engineering team developed and conducted several waves of a fantastic 4-week training program for robotic welding techs, covering process theory, troubleshooting, manual welding skills, PM’s, procedures, “crash” recovery, programming and “ninja” robot optimization secrets. Results were world-class because every W.E. played niche roles in different training segments, or covered for others. (Left to right above: Nick Perry, Mike Walther, Bill Stevens, Nick & Mrs. Erchak, Gerald Dunnigan, Jared Wilson, Brian Dobben, plus  Travis Sands and a couple of “top gun” robot integration programmers you don’t see)

Exceptional teams cultivate the “eyes” of the individual team members. Each member needs a realistic awareness of their niche skills, and a respect for the niche skills of their teammates. There’s room for pride and excellence in skills, because members know the excellent contributions of their unique skills are wanted and needed by the team. There is also freedom to learn from each other, to ask for help in weak areas, and to rely on others strengths.

A major team pitfall is not recognizing and valuing skills and weaknesses. Which expertise niches do team members bring, and not bring, to the team?

Drop pretense, and play to strengths. By consistently passing the ball to the person who is best able in that moment’s situation to move toward scoring, a team will consistently get high-performance results. By neglecting to help egotistical ball-hogs use the team’s skills, even teams with good athletes will consistently struggle and score low.

Just as you buy a drill to make holes, you buy welding automation to make welded products. It is crucial to realize that welding: is the core process;  is typically the most complex process in the plant; only welds like an expert when it is taught by highly trained experts.

To excel, every essential portion of a welding automation project must faithfully serve both the physics of the core process, and the end-goal of profitable stability and quality in production. Elegant simplicity and robustly profitable quality are hallmarks of automation excellence.  As leader of the core process, the Smart Welding Engineer is responsible to convey those process needs to the controls and tooling, and call the process shots as the welding quarterback.

And yet, every team-member is like the turtle on the fencepost, who didn’t get there on his own.

Brian Dobben


Turnkey Illusions – How to Avoid Pitfalls When Outsourcing Welding Automation

April 6, 2010

“You can easily purchase high-performance welding automation “turnkey” without needing in-house welding expertise, because the integrator is “the expert”.” Really? That’s a familiar idea. But is it true, or… is it just a manufacturing management myth?
It’s a MYTH.

Chances of success? Probably less than 10%. That’s how you purchase poor to mediocre welding automation performance, like most of your competition has, which usually produces small profit margins. Is that the solution that will REALLY help you survive and get stronger? If it’s seemed like every launch is a new Vegas gambling junket, you may not be far from the truth: 10% odds on bringing home a profit doesn’t sound very appealing. Still want to try it again?

Instead, why not try the rare “high-profit expertise” approach?  Let’s compare. In this valuable article I’ll cover:

  • Three Foundational Welding Automation Principles.
  • The Two Successful Paths to achieving high-performance welding automation.
  • Three classic reasons that welding integration suppliers can rarely deliver world-class “turnkey” welding automation results.
  • Five suggestions on how to pick an excellent welding automation designer/integrator and achieve great results.

You buy or create automation for two basic reasons:  to improve profit & quality, or because a customer demands it of you for those very reasons.  So why not be hugely successful at it?  Why not say goodbye to painful, lame launch results? Why not aspire to be so successful in manufacturing automation, that you trounce your competitors? Why shouldn’t one of your biggest challenges be developing strategies to hide how profitable your welding operations are from your nosy customers and envious competitors?Robot in welding integration

To be most successful in welding automation, the first two questions to ask are “what is our path to the best long-term profits, and what will it take to get us there?”  Because I have repeatedly achieved that in complex welding automation, and created cultures of effective Continuous Improvement, I have some solid answers for those questions. But to explain, I need to build the foundational principles – because they are invisible on the radar screen of most company management.

First, let’s realize a simple point: whatever the Pepsi machine says in the display window is how much it costs to get a bottle or can out of the machine.  If the goal is high-profitability, high-quality welding automation that gives you a competitive advantage, then there are some coins required to get there.  Don’t dare think you can save money by cutting critical “options” from the purchase order: that’s like watching a manager beating on the $1 Pepsi machine and demanding a drink for their customer when they only put in 75 cents. Don’t create such embarrassment… decide upfront to pay the price for success.

Instead of looking for ways to cheat the cost of success, which creates a high risk of project failure or tiny profits, look for low-cost opportunities to innovate and make the automation even more profitable than the proposal said it would be.

Read the rest of this entry »


Weaknesses in Integrating Welding Systems with Robots

March 26, 2010

“What is expected of a welding inverter” in order to be able to interact with a robot?  Common, logical questions for a welding equipment marketing guy, right? In a recent robotic welding group forum, Mr. Chinoy, the marketing manager of a welding equipment company, also asked “what parameters are required to integrate GMAW (MIG) equipment to the robot control panel”, besides wire feed speed and voltage? I answered those. And yet, hidden under the tip of that question like the 90% of an underwater iceberg, is the real question of ship-sinking power: what welding system interfacing and content will really earn the respect and repeat business of an end-user customer? Let’s do something stunning, and talk about that far bigger question too!

The answers depend on both your target business segment, and your company’s long-term goals as a welding equipment manufacturer. Many welding equipment companies design and launch a new machine every 3 years.  They just answer the obvious visible/functional questions.  One company chose to put out a pulse-MIG inverter that has been in continuous production for over 20 yrs, and has been the “king” not only of Electric Boat but the Korean shipyards for over a decade. In fact, older system versions can typically be upgraded to latest performance or customized waveform combinations with a simple plug-in EPROM chip swapout.

Why such content & success with the Digipulse (Automatic) system?  Simple – they answered the big hidden questions, and applied the hard yet hidden expertise required in order to faithfully serve the arc physics as well as the customer’s real needs and desires. How could they design that content back when welding robots were nearly non-existent? Because “hard-tooled” PLC-interfaced welding automation has essentially the same basic performance and interfacing needs as a robot. That can be shown by taking the unusual step of putting a robotic MIG process “fishbone” diagram together.

I’ve put a GMAW fishbone below (a W.E./SSBB project collaboration). It’s still hard to read when you click on it, and it doesn’t touch on the welding system design or integration content. But, it does show the overall process complexity and provides a starting point to consider welding system design and integration needs in order to consistently deliver perfect weld quality.

GMAW Process Fishbone

GMAW Process Automated Welding Fishbone

Take arc-starting and arc-established signals, for example. A manual welder is going to automatically compensate for an occasional poor arc-start. It doesn’t matter. But consider the dramatic difference in welding automation: when the torch travel in automation must rely on a signal to begin, aren’t the quality and cost implications much more dramatic and far-reaching than what most welding equipment manufacturers have been prepared to admit? This is only one piece of the automation puzzle, but it’s both critical and badly neglected.

The common minimalist approach is to provide a feedback signal during active welding, a “system ready” signal, an error output signal to indicate the system is in a fault state and unable to weld, and maybe a system-reset input. Many welding systems just provide those minimums, as “add-on” content to enable manual welding systems to go on a robot.

The problem from there is that many end users expect (at least eventually) to get high-performance welding automation results.  Of course that doesn’t happen, then everyone points a finger of blame at someone else, and if the customer succeeds in identifying the true welding-system design and/or integration weakness using many examples and actual real-time recorded data, the company responsible (such as Panasonic did, twice) might simply shrug and say “it welds good most of the time”.  Of course it does. But it’s also incapable of delivering world-class performance, simply because it’s not designed to.   Read the rest of this entry »