On Shoulders of Giants – Part 2

June 25, 2018

On Shoulders of Giants – Part 2

Continued from Part 1 here.

Only fifteen years after my LeTourneau graduation did I realize that the availability of welding science expertise in industry is in fact, sadly rare. Even ridiculous. It hit me when Yoni Adoni (OSU/LeT-U) explained that the raw numbers for W.E. graduates and Welding Engineer job titles reveals that 70% of “Welding Engineers” don’t have the degree. As the overwhelming rule of thumb, they are “familiar” with one or two welding processes but have little or no welding science training.

This holds the weighty implications that degreed W.E. compensation centers around the 85th percentile, and that true, un-hyped “blue ocean” advantages exist for companies who infuse their company’s core with welding science competency and nurture it.

These realizations evoked yet another puzzling frustration: how could it be that 95% of company engineers, managers and executives, and 99% of HR managers or directors seem unable to comprehend and leverage such obviously valuable opportunity, fully exploiting welding science for competitive advantages? Surely I’m not the only one with two eyes in my head!

Like Morpheus’ splinter illustration to Neo (The Matrix), there was a splinter in my mind: amidst all of this there were two things that especially stumped me over the years. First, the wide gap between EWI’s applied welding process expertise, and my expertise. Second was a maddening, incomprehensible industry-wide ignorance that is blind to the existence of both welding sciences and welding engineers.

  1. How could I have TWICE unknowingly come into a facility behind an Edison Welding Institute (EWI) TEAM investigation report, and bested EWI engineers by predicting and delivering welding process improvements of 500%+ beyond what their evaluation said was possible? There is nothing shabby about EWI’s remarkable achievements – they are arguably the most renowned and most capable pool of consulting welding expertise on the globe.
    So how does this make any sense?  How is it that:
  • A new (1993?) Carrier compressor plant told me that their single biggest problem – a joint made by one simultaneous 10-point Resistance Projection Weld – couldn’t be fixed until they re-designed and re-tooled a completely different approach, which would total nearly a half-million dollars. I objected that it posed no problem to weld, and was probably a superior design – despite the new-launch failure rate which often exceeded 50%. But those decisions made several days earlier were grounded in the fact that both the RW machine builder and an EWI team had concluded that it could not work and that the only solution was to revert to an industry-standard design. I looked it over for 15 minutes, went back and told him all he had to do was reduce the force, increase the amps and volts, and shorten the weld time, and it should be no problem. A week later they let me and a T.J. Snow staffer take 45 minutes (wink) to develop a new weld schedule and machine settings. 30 minutes later, they couldn’t separate more than two projections in over 50 hits from a 32-oz ballpeen hammer (literally) that completely flattened all the sheet metal. Yet, until that moment, whacking it twice without snapping it completely off was labeled as “good” because that was the best ever accomplished.
    What?!!?
    How do I make sense of erasing this simple half-million dollar “impossibility” in 30 minutes, with no tooling or machine hardware changes, based on a 15 minute evaluation?  Were EWI’s main RW experts and the RPW machine-builder’s lead staff ALL on longggg vacations? Can’t any good welding engineer do this stuff?
  • A two-week EWI team investigation in the mid-90’s provided a filled three-inch ring-binder report which concluded that Copeland Corp’s (Emerson Electric) flagship scroll-compressor plant headquarters production facility was doing fantastic in their RPW/GMAW/Brazing/Friction-welding production as the industry leaders and that they might be able to accomplish 5 to 10% reductions in welding rework & scrap. Months later after a pre-interview one-hour plant tour, I was shown charts on their weld defect/scrap tracking, and pointedly asked how much improvement I thought was possible. Encouraged to sit and ponder it at length, I took four minutes to consider everything I’d seen on the floor, and told Gerry Ulrich that with teamwork we could cut those rates by 50% the first year and cut it in half again the second year for a 75% reduction.
    When Gerry asked my certainty, I said I was confident in the first 50%, and felt the 2nd year was a bit conservative because I suspected we could do better. (I knew nothing about EWI’s study and report until months later.)  A year later we were at 50%, and ending the 2nd year we had reduced FPY losses by 80% since my interview. (Although Copeland never understood what really happened or how to fully leverage it, varying portions of what I accomplished was franchised into many new plants across the US and the globe.)But any good welding engineer can do this, right?  Ten years into my career, my confidence in that assumption was eroding, and it disturbed me. I was perplexed by EWI’s inability to provide more benefit to their customer than they did with four(?) W.E.’s in two weeks, but I slid it unexplained onto the back burner, where this puzzle intruded into my mind a thousand times.
  1. How is it possible that the 95%+ majority of manufacturers who daily sell their expertise at making complex welded assemblies think that they do something else, just because it superficially looks like an aerospace battery enclosure, an EGR cooler, an automotive seat frame, a truck axle, a nuclear valve, or a compressor?
    Worse, companies think that staff or vendors without extensive welding science training can design and program a welding automation system that is infused with process expertise to deliver high-profit, high quality results with huge competitive advantages. That will NEVER, EVER happen – yet that myth appears to be the prevailing “conventional wisdom”

The final piece of my mental puzzle was in coming to grips with myself. “I want to make a difference” is an inadequately shallow description. In every job I’ve ever had, my goal has been to understand the company and chart a path to guide their unique cultural blend of talent through thousands of un-comprehended complex details, to reach achievements and performance levels that had never been thought possible. This, too, I imagined was something that “every good welding engineer” did.  But they don’t.

All of this spiraled into many interwoven questions that tumbled in my mind for years like threads in a dryer, seeming to defy every attempt to untangle and weave them into a cohesive, accurate explanation:

  • WHAT IS SO WRONG WITH EXECUTIVE MANAGEMENT TRAINING PROGRAMS THAT EVEN VERY SHARP EXECUTIVES DON’T SEE A GRADUATE WELDING ENGINEER AS A VITAL TECHNICAL ENGINEERING MANAGER ON THEIR DIRECT-REPORT TEAM?
  • Why do very smart people see no problem when technically ignorant people get to override a degreed welding engineer with financially costly errors that demand long hours from their W.E. to even partially compensate for them?
  • Endlessly following mythical welding “facts”, tribal “knowledge” and committee-decision technical nonsense… how is that a good strategic policy for explosive growth and low turnover of their most crucial technical expertise?
  • How is it not inherently obvious that as the most complex industrial processes by far, blending more sciences and interactive process control variables than any other, welding science must become a Core Competency if they are to ever remotely approach their facility and corporate potential?
  • How can a leading automotive Tier I supplier of welded metal assemblies believe that a major quality spill is due merely to an accidentally deleted pause after arc-start, before the robot starts moving? How can they not see the true root cause is in not having one single welding engineer among more than 10,000 employees in over 50 global facilities, and that such blindness makes costly welding quality problems a certainty?

It is questions like these that kept me puzzling, got me researching, and kept haunting me. Finally I’m at a point in my career where the many complexities have coalesced, and I’ve been able to analyze and rationalize these systemic industry roadblocks.

In a simple nutshell, here is the core root-cause of these blindnesses:
Industry and management are ignorant of the existence and power of welding sciences and welding engineering, simply because they’ve never been taught.

Some have been told, but very rarely have they been taught.  A three-page e-mail to an engineering & management team is a sure-fail method to teach them a foreign language and culture that they have never been exposed to.  I know.  I’ve spent hundreds of hours trying to find ways to TELL, and it has only exhausted me while frustrating everyone.  Simple facts can be told, but complex matters can only be taught.

Why don’t at least SOME companies recognize this “blue ocean” opportunity and infuse welding science as a core competency with a determined growth strategy, and include serious succession planning for senior welding engineering staff?

Don’t companies want to make money, gain marketshare, and catapult their future forward?

Yes.  But in the stark manufacturing world beyond CATERPILLAR and John Deere, such commonplace business goals are rarely applied to the practical welding sciences that are strewn across the entire plant. In this one arena of welding, this one arena only, the myths, excuses, guesses, tribal knowledge, medicine-men and folklore still substitute for common-sense business. Despite massive profit losses in welding, over 98% of executives, managers and engineers show no interest in welding performance data tracking that could de-cloak both those losses and their potentials.
Can’t they see the vastly untapped potential of welding science expertise? No. Definitely not.

After decades, I’ve realized there are definitive reasons for the common welding blindness’s of both engineers and managers, as well as executives. They are embedded firmly in the chronological industrial timeline, which is hinted at by the late appearance of welding physics, equipment and process development.  But the magnitude of this problem is revealed in a simple organizational survey question: how many of your staff have had at least one welding science, welding process, or welding equipment class? Contrast that with the classroom and lab training that welding engineering programs provide, and your first glimpse of the size of this chasm will come into view.

Despite being the most complex industrial processes, applied welding science studies were never mainstreamed into collegiate engineering, management, and manufacturing processes curriculum. In fact, only three universities ever created substantial ABET-accredited degrees in welding engineering. Understanding this history finally makes it possible, for the first time, to build effective strategies to unleash advancements and competitive advantages in this barely-explored territory.

I’m skilled at developing custom training programs – finding development bandwidth is the challenge.  Yet if I can find some means to get this knowledge into manufacturing management, engineering managers and corporate executives, and chart paths around the obstacles, my knowledge could enable immense sea-change benefits.  If I can pave that road, then a few other welding engineers and their companies will be able to follow.

On that coins’ flip-side, if I do not find my voice, and ways to speak up and speak effectively, it’s unlikely that my abilities will ever be used to the extents they could be leveraged to transform profits and launch companies manufacturing welded assemblies into global orbits of excellence that leave historical legacies of market dominance.

Joe Beckhams’ parting advice and comments indirectly convinced me that I need to write the book I’ve pondered for the last decade:

Toward World Class Welding.

I probably should write it. But I naturally wonder, would there be significant interest? Would it make a difference?

Perhaps it would. Maybe the simple fact that words printed in a book that are being read by a company I don’t work for, could induce the assumption that I have noteworthy expertise in manufacturing welding process science.

If you’ve read this far, thank you for enduring my rambling points of repetition and questionable literary skills.  As a reward, I offer this career-long observation that I hope you’ll take to heart:

Any manufacturer with “good” welding processes who lacks a welding-degreed engineer among more than a hundred employees is very likely losing more than 10-times in profits what a full-time Smart Welding Engineer would cost – one who could deliver those lost profits to the bottom line.

My talents shouldn’t go to waste when they could make a large impact for countless facilities.  So if you’d like my assistance in any strategic or technical welding area, I do have weekends and some vacation time available.  E-mail me and we’ll explore from there.

 

The Hall of Giants

My most notable mentors were/are these men:

  • Bill Dorsey, an Electrical Engineer steeped in applied welding engineering who led development of one of the most successful and respected power supplies in the welding equipment industry, known in combination with the MIG-35 feeder for its exceptionally smooth arc, its dependable arc-starting, and its durable reliability. Bill was my main mentor. His brilliant mind was evident, and my frequent exposure to his systematic logical troubleshooting of welding processes and equipment, with running educational commentary, had value beyond description. In many ways, though I suspect it was unintended, I became his unpublished protégé.   My absorbed abilities in welding system design evaluation and improvement have never been tapped to any extent beyond benchmarking and predicting production performance results.
  • Ted Toth, a quiet in-the-shadows immigrant genius whose main legacy was the architecture and control algorithms for the legendary Digipulse 450 that especially ruled Electric Boat for over a decade and the Korean shipyards for two decades. Ted was genuinely excited to work with me ten years after I left L-TEC/ESAB N.A., to take the waveform I developed for automotive exhaust with 409/439MC and give me a fully synergic version across the whole WFS range.   Then months later I called him with a proposal for how I would love to see tip-burnback-prevention built into the main arc control loop logic. With only a few minutes of my explanation of the control-logic approach, Ted was excited to plunge into it. Perhaps three weeks later he called to announce he was e-mailing me a new .bin to burn into the Digipulse E-ProM’s on our robotic welding systems. It was an instant success that ESAB immediately leveraged for their Al welding customers, where the impact was 10x greater.
  • Joe Devito, a quiet, confident hands-on welder/instructor/trainer/lab developer and more. He had more influence on me than he suspected.
  • To Rex Young, thank you for being the man I grew to appreciate so deeply: a kind, fun, thoughtful gold-mine of expertise, knowledge and advice in all matters of Resistance Welding.
  • To Tim Iorio, thank you for the opportunity to have some of your strategic vision and heart rub off onto me, along with other invaluable things. You are often remembered.
  • To Joe Beckham, the value of your parting words cannot be measured in a mortal lifetime. Thank you. I’ll probably have more to say. But for now, refer to the narrative above.
  • To Daniel Mann, you’re a marvel and a brother. You walk a narrow, unmarked, untraveled path that’s well beyond sight of the 10 or 15 year learning curve in your position. You are an awe-inspiring pioneer. I wish we had more time beyond the next firefight, to learn from one another, collaborate and fully deliver the results we’re capable of.  It would be epic.

 

Advertisements

Is Welding Engineering a good career? Where should I get my Degree?

October 14, 2014

People considering a Welding Engineering career are most likely to ask me one or more of these three questions:

What is welding engineering like?  Is Welding Engineering a good career choice?  Where should I get my degree?

Here’s a concise answer to all three questions.

As far as the W.E. profession, it’s wide open, industry is starving for them, the norm is that over 90% of W.E. grads have accepted an offer months prior to graduation, it pays better than most degrees, and there are many different industries to choose from. That’s the upside. One downside is that you might tend to move or change jobs more frequently than some other professions.  But this is due to another downside that is strange and unexpected in engineering careers:

Since most companies don’t understand that welding is by far their most complex process, and needs to be a central focus for building core expertise, they typically don’t empower or appreciate Welding Engineers anywhere near what would be wise, sustainable and profitable for the company’s future and growth. As a result, a Welding Engineering career can tend to be a frustrating journey through ignorant companies making dumb welding decisions… and yet there are some great successes in the battlefields along the way.

Welding Engineering is also called Materials Joining Engineering – that’s what both Ohio State University and LeTourneau University call their degrees now.  How are the schools different?  OSU offers only engineering, Ferris State University offers only engineering technology, and LeTourneau offers both.  OSU tends to be very science and metallurgy heavy while being too neglectful of the value of manual welding experience that’s needed to catalyze the sciences into a realistic comprehension of what is happening in the molten puddle and how to optimize it. FSU is very hands-on heavy and a great preparation for any manufacturing floor role or code-shop, but they are light on metallurgy and a good span of all the welding processes. LeTourneau has always tried to be a great practical blend of both science and personal skill, producing the most well-rounded graduate, and they are not allergic to transfer students. That’s just my perspective, based on exposure and the historical norms of the various programs.  I don’t know enough about Weber State University or Penn State’s programs to comment, but at least one reader has been through Weber States’ accredited program (Manufacturing Engineering Technology, Welding Emphasis) and thinks it’s solid.  There are a few other programs out there, but in general most of the other available programs are limited in focus, staff, equipment and exposure, and consequently are not ABET accredited.  (Check the sidebar to the right for links to the WE programs.)

William Roth, PE and CWI added this in blog comments, to explain “the difference between an engineering degree (welding or otherwise) and an engineering technology degree. The engineering technology degrees normally don’t have the heavy math and physics in their curriculum as does a regular engineering degree. In most cases, having an engineering technology degree will either delay or prevent one from being able to sit for the professional engineers exam. While most jobs do not require a PE license, there are limitations to what work you can do without one. In some states, you can’t market yourself as an engineer or open a company with the name engineering in it if you don’t have a PE License. Getting an AWS Certified Welding Engineer qualification is nice, but is not recognized by any state as a license.”

There are many industries with extensive welding, and there is value in broad exposure. One eventual decision that can be helpful along the way is to realize the major segments in the profession and focus in the areas that you find to be the most fun or most interesting or most stable… depending on your priorities. Plate thicknesses, or gauges? Manual or automated? Volume products or custom challenges?  Steel, stainless, aluminum, or copper alloys – or exotic super alloys?

If you notice, I didn’t say one word there about any industry. That’s because Welding Engineering is much more about the physics, sciences, metallurgy, techniques and variables than it is about which particular industry you happen to be involved in at any given point.  And THAT is a key point that defies the HR/management logic in most business segments – you’re not really in agricultural equipment or automotive or appliance or medical equipment: you’re in welding engineering, and they are in the business of selling their expertise at manufacturing welded assemblies. How smartly are they doing that? Most companies barely have a clue, which explains why they aren’t trouncing their equally ignorant competition or seeing the flashing neon signs of opportunity: blind people can’t see signs without touching them or running into them.

I think if you identify your interests based on the divisions of the physics and skill-sets, and then look at industries which must typically bow to the laws of physics in those ways, you’ll be more successful.

Many companies are driven by their ignorance to search for a welding engineering wizard who will give them a special blessing and a potion that allows them to defy the laws of physics as they see fit. The more persistent they are in searching for this wizard with the power to grant them their wishes, the more likely they will shipwreck themselves and be just another sunken vessel on a business map. Your mission, should you choose to accept it, is often to educate them that the glorious path of legendary profitability and growth is in the direction of learning and serving the laws of physics better than any of their competitors.

Finally, there are several other good articles to help with these questions. The popular “Difference between a Welding Engineer and a Certified Welder” has over 50 valuable comments/discussions.  Other articles are easy to find using the Tag Cloud in the righthand sidebar – just click on a subject to view a list of related articles.


Ten HR Questions for Welding Engineer Candidates

December 1, 2013

One of the common Welding Engineering searches online by HR or staffing professionals is looking for questions to ask Welding Engineering candidates.  Since such searches turn up little information, I’ve offered these ten questions for staffing professionals in HR roles to ask a Welding Engineer or Materials Joining Engineer:

  1. How did you become a Welding Engineer?  (This seems overly basic, but since ~70% of titled “welding engineer” positions have little or no training in the field, this is a vitally important question.)
  2. Which welding processes have you had formal training in?
  3. Which welding processes are you comfortable with?
  4. What materials have you commonly welded?
  5. What material thickness ranges have you worked with?
  6. Can you describe the types of welding training that you have conducted personally?
  7. What degrees or certifications have you received?
  8. Can you give me an example of how you’ve saved a company money, or increased profitability in welding operations?
  9. What do you see as the broad responsibilities of a welding engineering role in our industry?
  10. What could you do for us that most welding engineers can’t?

Bonus questions for experienced welding engineering candidates:

  • Based on your training, skills and experience, how comfortable are you in structuring and executing world class welding in an automated welding environment?
  • Based on your training, skills and experience, how comfortable are you in structuring and executing world class welding in a manual welding environment?

Keep in mind that some questions may not be as applicable in some companies – you might ask an engineer for help in selecting or modifying the best questions. But in general, these are great questions.  Sadly, questions like these are often a competitive advantage. Why?  Companies interviewing for these positions are selling their expertise at manufacturing complex welded assemblies, but don’t even know that describes their core business competency needs. So these questions are a plus to qualified candidates, who will get the impression that your company at least has a clue about the need and value of welding engineering.


The Top Two Welding Excellence Obstacles in US Manufacturing

April 4, 2012

Does your company want the profitability and competitive advantage of welding excellence?  What’s standing in the way?  Two years ago I started a survey poll asking manufacturing welding engineers “what do you think are the Top 2 biggest obstacles to welding excellence in American manufacturing, in the facilities you are personally familiar with?”

Many welding engineers responded, and here were the top answers as of April 4, 2012:

 20%     Staff don’t support weld requirements, and force upstream problems on welding.

20%     Poor welding process knowledge in the design team.

15%     Unqualified people dictate process without honoring Welding Engineering expertise.

14%     Manufacturing welded assemblies with NO degreed welding engineer.

7%       Welding Engineers lack time/support to find and justify the best solutions.

5%       The Manufacturer is too intently managing the economic death of the plant to invest and save it.

 (In general, most WE’s picked at least one of the top two answers, then their second pick ranged among the other choices. The other answers received only one or two votes. You can see them in the poll.)

It follows logically from this survey that if you want to remove obstacles and create welding excellence in your company, that those issues must be addressed.

Additional “gold” came in the comments responding to the poll, which I’ve added below. A key point for me is that because welding is the most complex process, it requires core expertise that can reach to the upper echelons of the company: the need is just as valid as for Tool and Die, or Quality, or OP Ex, or for Information Technology.  Even Six Sigma Blackbelts fall flat on their DMAIC’s when it’s a welding process project, yet when a Smart Welding Engineer is unleashed… the problem is quickly resolved.

The Title and corresponding role of “Welding Engineer” is far too limited in most company structures to enable excellence in welding processes. How many companies have a Director of Welding Technologies, or a Manufacturing Welding Engineering Manager? Very few. They are just as rare as the highly profitable welding operations they could produce.

Poll Comments: Read the rest of this entry »


How to Hire the Welding Engineer You Really Need

March 30, 2009

—  Warning —
If your company makes welded assemblies this information is worth
hundreds of thousands or millions of dollars a year in profits.

Searching for a welding engineer or welding engineering manager isn’t an easy task for an HR staffer or professional recruiter. For many reasons, there aren’t many of us Welding Engineers out here. And 70% of job-titled “Welding Engineers” have little or no training in the welding physics and sciences and so are largely or completely unqualified – knowing enough to enable the welding processes, but often carrying enough influence and ignorance to drive companies right out of business. But to complicate the picture, all three recognized Welding Engineering programs have very different approaches and very different ideas as to what a Welding Engineer really is and should be doing.

Caution:  Welding Engineering training and experience is mainly process-specific and/or material-specific, not industry-specific. This has broader implications, but it’s critical to understand that their skills and expertise easily transfer across completely unrelated industries. Your search can easily turn up dry if you think your competion for a welding engineer is your competitors, because it’s not.  You’re looking for process expertise, and your search competition is all industries that weld similar materials and thicknesses.

Formal education is just the beginning of the story because once they’re out in the workforce, degreed welding engineers tend to lean into different areas.  A W.E. might lean toward heavy-wall welding, meaning it’s either piping, structural, off-road heavy equipment, or pressure-vessel, and normally includes a lot of manual welding management, welder training and certifications. Or a W.E. might lean toward the thin “gauge-thickness” materials. In terms of experience, those two worlds (thick or thin) are probably the greatest differences.  Beyond that, they might have a strong affinity for manual hand-welding environments, or for welding automation, or for metallurgy, “exotic” materials, testing, training, process optimization/control or R&D work.

As a personal example, over the years I have been compelled to conclude that I have some world-class skills in an environment of welding automation on gauge-thickness materials.  In that arena, I can excel to a level that makes most welding engineers and welding equipment manufacturers seem rather incompetent – I always find myself trying to figure out who is trainable that I can develop as a welding engineer or equipment supplier.  Can I handle an exclusively manual welding environment of heavy-wall code work that can’t or doesn’t want to move any of it into welding automation?  I’ve been trained, I’ve had exposure, but exclusively manual heavy-wall code welding is not my thing.  I could eventually grow into it, but many W.E.’s are better suited and it might be a waste of my individual talents.  Why not hire the right guy and support him?

A recruiter friend of mine, Kirk Abraham, recently said or quoted “Robots are fast, accurate & stupid. Humans are slow, sloppy & brilliant.”  Too many companies either can’t see the value in having brilliant humans teach robots to be fast and accurate, or they sense wisdom in the idea but just don’t know how to get there.

Then there’s the company or client side of the picture, which frankly can be structured to make the task of filling a WE opening… impossible. There are many pitfalls. After years of watching and participating in this sometimes painful dance either personally or by proxy of fellow welding engineers, I hope my perspectives may be a dramatic help to you as you work to fill your welding engineering position. Along the way I’ll discuss experience, job title, job description, responsibilities, compensation, training skills, strategic issues, and much more.  Here we go!
Read the rest of this entry »


Welding Engineer Salary Compensation Data

March 13, 2009

In January I found this question that had been posted in a members-only forum last fall, asking where to find solid data on Welding Engineering salaries.  Until I responded near the end of January, not much help had been offered.  There’s some good content on management & HR perspectives, and some of the challenges in building a high performance welding team.  But mostly I want to put out his question with the answer I posted, to see if anyone else can offer data or suggestions.  And if someone wants an excellent project that could strongly benefit many metalworking industries, their HR staff, the welding engineering profession, and recruiting networks – here’s a wonderful opportunity to contribute.

Hello Everyone,

I am looking for a realistic comparison of WE salaries. I have been searching the web, but have found very little applicable data. I am looking for average salaries within the WE field, specifically in the 0-5 years experience range. If anyone can offer any help, I would really appreciate it.

Thanks,
Dave

Dave –
There is a real need for better data on Welding Engineering salaries. Having personally interviewed 150-200 WE’s over the last 3 years, and hunting hard to assemble justification for realistic market salaries while hiring 9 BSWE welding engineers, I learned some things that few understand.

OSU and Ferris State have data on WE grad starting salaries. OSU’s is most complete and easiest to find online, the last I knew. The best data I’ve ever found on welding engineering career salaries is at ThinkEnergy-dot-com. BUT, there’s a huge caveat that they don’t tell you about. While they track Welding Engineering, they do not distinguish non-degreed from degreed WE’s: all figures are lumped together purely by Job Title. That doesn’t sound bad until you realize it’s not at all like other engineering fields, where most Civil Engineers or Chemical Engineers actually are trained in their disciplines – which is why the W.E. salaries look much too low. In the U.S., according to Dr. Yoni Adonyi (Professor of Materials Joining Engineering, LeTourneau University), about SEVENTY PERCENT of “Welding Engineers” are merely appointed to the job title. That’s because they need someone and either can’t find a real W.E., think they don’t need a real W.E., or they aren’t willing to pay for one (for various reasons). The stand-in may have a vocational welding certificate, or an Associates or Bachelors in another field, but in most cases their welding training is very limited.
Read the rest of this entry »


Advice for Recruiter Client’s Welding Engineer position – #2

March 7, 2009

This is the SECOND in a series of responses from my e-mail archives, which I’m publishing because the Recruiters noted them as helpful advise and perspective on their client’s Welding Engineering search. Most recruiters and even most HR Managers have little experience or exposure to the Welding Engineering segment because it’s so small. It’s my hope that these will help increase understanding of some of the realities, needs, obstacles and rewards in finding and retaining degreed welding engineers.

I read the job description you sent, and Wow. To softly summarize, your Asian-car-company client would be well advised to change their strategy on this position. Why not wisely select a Smart Welding Engineer and let them do their job?

OK, let me take the velvet gloves off for a minute. Don’t take this wrong, but after reading the job description, here’s my very blunt assessment:

“Welding Specialist” is a bad start for the job title. It might be simple ignorance, it could be an inadequate Asian cultural translation, it could be mimicking poor practices in the “Big Three”, or it could be someone’s “clever” idea to save money, but that job description is the role of a BS-degreed Welding Engineer. That’s what they are trained to do: the average BSWE (or equivalent) has 3,000 – 4,000 hours of classroom and hands-on training in the welding processes.  Filling that welding engineer role with anyone else is like taking a CFO position, relabeling it as “Financial Supervisor”, and requiring candidates to have any Bachelor of Arts degree instead of an MBA.  Yeh, a stunning cost-savings idea there.

If they don’t hire a BS-degreed Welding Engineer for this position, it will probably save them $20-40k a year and cost them a minimum $500k (if not several $M) in the first 3 months of startup alone, vs a qualified Smart Welding Engineer. But unfortunately, as that happens, there’s rarely anyone around who’s qualified enough to recognize the losses and missed opportunities and attribute them to targeting and hiring an unqualified person. Even if the “Welding Specialist” knows it, are they likely to be explaining to management that they can’t do their job justice? 

Read the rest of this entry »